{$cfg_webname}
主页 > 电子信息 > 电子 >

BGA器件无铅再流焊温度场仿真设计(附APDL程序)(新品)

来源:wenku7.com  资料编号:WK73467 资料等级:★★★★★ %E8%B5%84%E6%96%99%E7%BC%96%E5%8F%B7%EF%BC%9AWK73467
以下是资料介绍,如需要完整的请充值下载。
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.资料仅供学习参考之用. 帮助
资料介绍

摘  要
尽管焊接缺陷、焊点可靠性等焊接质量仍然与焊膏印刷、 贴片等前面多道工序有关,但据研究结果和生产统计表明,更多的焊接缺陷来源于再流焊工艺本身。再流焊是预先在PCB(Printed Circuit Board)板的焊接部位(焊盘)放置适量和适当形式的焊料,然后贴放表面组装元器件,经固化(在采用焊膏时)后,再利用外部热源使焊料再次流动达到焊接目的的一种成组或逐点焊接工艺。只要设置合适的再流焊设备的各区温度,几乎能完全满足各类表面组装元器件对焊接的要求,实现可靠的连接。但目前在国内还没有建立再流焊接温度场的模型,仍采用反复试验的方法制定再流焊接工艺,造成了巨大的财力和人力的浪费。因此,对再流焊温度场的仿真研究极其重要。
本文研究的是BGA器件无铅再流焊过程中的温度场仿真。用ANSYS软件,根据所用无铅钎料的性能,分析了获得良好焊点性能的再流焊温度曲线;利用传热学的理论,将再流焊中红外加热转化为对流加热,结合再流焊设备对PCAs(Printed Circuit Assemblis)加热的实际物理过程,建立了红外热风再流焊方法的传热数学模型;根据再流焊设备的尺寸,结合获得良好性能产品的再流焊焊膏熔化温度曲线的要求,根据BGA的封装,建立仿真所用的PCAs有限元模型;获得再流焊炉各区的加载温度:进一步对PCAs的再流焊接温度场进行了动态模拟,获得了PCAs整体组件的动态温度场和比较满意的再流焊工艺仿真。
通过对两种加载曲线的仿真结果的比较,获得适合无铅加载的曲线设置以及曲线的优化方法

关键词: 无铅;再流焊;仿真;温度场;表面组装;建模

Abstract
Although the welding defects, welding quality solder joint reliability is still with the solder paste printing, placement, etc. in front of the multi-channel processes, but according to research results and production statistics show that more of welding flaws from the reflow process itself. Reflow soldering is a solder that connect SMD or SMC with PCB by melting the solder utilize external heat sonrce make solder reflow and solidify the solder by cooling it (while adopting the soldering paste).Reliable connection of various components is attainable when the temperature section of flow oven is setup suitably.The traditional approach of experimentally analysing production defects would be costly and virtually impossible for the temperature field model is not built homeland inside.An alternative to this approach is to derive computational and numerical models to simulate the reflow soldering process.
  This study is lead-free BGA devices during reflow temperature field simulation. With ANSYS software, according to the performance of lead-free solder analysis analysis for good performance of the reflow solder temperature curve ;whit the heat transfer theory, we will go in the infrared reflow into a convection heating, combined with the reflow equipment of the PCAs (Printed Circuit Assemblis) the actual physical process of heating, the establishment of an infrared hot air reflow method of heat transfer model; according to the size of the reflow equipment, combined with performance products for good solder paste reflow melting temperature curve requirements, according to BGA packages, the establishment of simulation by the finite element model used in PCAs; access various parts of the reflow furnace load temperature: further PCAs re-flow soldering temperature field in the dynamic simulation, the dynamic component of the overall temperature of PCAs field and more satisfied with the reflow process simulation.
   By comparison of two kinds of load curves’ simulation results. The study can obtain the curve for lead-free settings, and load optimization curve.

Key words: Lead-free; Refolw soldering ;Simulation; temperature field; SMT; Modeling

本课题研究的内容
到目前为止,人们对再流焊进行了大量的研究,而且研究多以二维模型为主,对于三维模型的研究还很少。,虽然都取得了较为完善的研究结论,但在实际应用中还存在一定的局限性,而且研究多以SnPb钎料为主,对于无铅钎料的研究相对较少。随着,人们环保意识的逐渐加强,电子产品已经全面进入无铅焊接的时代,因此本文将利用ANSYS软件对BGA器件进行合理的三维建模,根据材料属性(包括导热系数,密度,比热等)随着温度的变化而变化,这将大大提高仿真的准确性,更贴近实际生产环境,为了使研究工作紧密联系再流焊过程的实际,本文将就再流焊过程进行模拟仿真研究。本文将主要研究以下内容。
l、本文通过对再流焊接工艺参数(传输带速度、热风流速、各个炉区功能设置及其温度设定)和焊膏的熔化温度曲线的关系展开研究,建立仿真板的传热过程的数学模型。
2、通过简化处理对PCB板、焊膏和BGA进行建模。
3、无铅钎料再流焊工艺温度曲线(峰值为平台和尖峰曲线)的设置,不同温度的温区设置而导致BGA器件上上温度场分布的不同状况,从而确定合适的温度曲线;
4、利用建立的仿真模型讨论和分析各个参数对焊膏熔化曲线的影响,并用此模型能对再流焊接参数进行优化和预测再流焊的焊接结果。
5、建立三维有限元模型,基于ANSYS平台,利用APDL语言在PC机上进行曲线加载,模拟BGA器件再流焊接的温度场。

BGA器件无铅再流焊温度场仿真设计(附APDL程序)(新品)
BGA器件无铅再流焊温度场仿真设计(附APDL程序)(新品)
BGA器件无铅再流焊温度场仿真设计(附APDL程序)(新品)
BGA器件无铅再流焊温度场仿真设计(附APDL程序)(新品)
BGA器件无铅再流焊温度场仿真设计(附APDL程序)(新品)


目    录     28000字
1  绪论    1
1.1无铅软钎焊研究的背景    1
1.1.1 无铅钎料的种类    1
1.2 PCB组件概述    3
1.2.1PCB的结构    3
1.2.2PCB的分类    4
1.3 BGA的概述    5
1.4 再流焊接建模与仿真的意义    6
1.5 研究发展现状    6
1.5.1国外研究发展现状    6
1.5.2国内研究发展现状    9
1.6 本课题研究的内容    10
2  再流焊设备及工艺要求    10
2.1再流焊热源    10
2.1.1再流焊热源类型与主要特点    10
2.1.2 红外加热风再流焊原理    11
2.1.3 红外线辐射加热风再流焊设备    12
2.2无铅钎料的选择及其特性    14
2.2.1选择背景    14
2.2.2选择的原则    15
2.3再流焊温度曲线    16
2.3.1无铅再流焊接温度关键参数的确定    17
2.3.2无铅再流焊温度曲线参数的设定    17
2.3.3无铅再流焊接温度曲线的管理    19
2.4 本章小结    20
3  再流焊数学模型的建立    20
3.1基本理论    20
3.2热传递的基本方式    21
3.3边界条件    22
3.4再流焊温度场的数学模型    23
3.5小结    26
4  PCAs的温度场仿真    27
4.1 定义材料类型和材料属性    27
4.1.1所需材料清单    27
4.1.2 Cu箔的热参数    27
4.1.3 FR-4的热特性    28
4.1.4无铅焊料的热特性    29
4.1.5 BGA的热参数    29
4.2 ANSYS软件介绍    30
4.2.1ANSYS软件分析方法    30
4.2.1关于ANSYS的热分析    31
4.3 创建有限元几何模型    32
4.4 边界条件    35
4.5 加载和求解    36
4.5.1加载过程    36
4.5.2求解过程    37
4.5.3求解的结果及分析    39
4.5.4 加载曲线的选取及优化    47
4.6 本章小结    48
5  结论    49
谢辞    51
参考文献    52


参考文献
[1]  吴兆华,周德俭[M] .表面组装基础.北京:国防工业出版社.2005:1~196
[2]  吴兆华,周德俭[M] .表面组装工艺技术.北京:国防工业出版社.2007:1~269
[3]  盛和太,喻海良,范训益[M] .ANSYS有限元原理与工程应用实例大全 .北京:清华大学出版社.2006:1 453
[4]  潘开林,周德俭.SMT再流焊工艺预测与仿真技术研究现状[J].电子技术,2000,21(5):185~187.
[5]  鲜飞.再流焊工艺技术的研究[J].电子与封装,2005,5(3):16-19.
[6]  毛信龙,韩国明,黄丙元等.SMT再流焊温度场建模与仿真[J].焊接技术.2004,33(13):35~41
[7]  王艳.SMT再流焊接工艺预测与温度曲线仿真技术研究[D].桂林:桂林电子工业学院,2004.
[8]  田艳红,王青青.微电子封装与组装中的再流焊技术研究进展[J].焊接,2002:65-95.
[9]  姜志忠.无铅焊点寿命预测及IMC对可靠性影响的研究[D].哈尔滨:哈尔滨理工大学, 2005.
[10]  林丹华.PBGA封装热可靠性分析及结构优化[D].湖南:中南大学,2008.
[11]  黄丙元.SMT再流焊温度场建模与仿真[D].天津:天津大学,2005.
[12]  毛信龙.PCB组件再流焊工程中热变形的建模与仿真[D]. 天津:天津大学,2005.
[13]  郭小辉. 无铅钎料在PCB再流焊中翘曲的模拟仿真[D]. 天津:天津大学,2007.   
[14]  JB/T10845-2008 ,无铅再流焊通用工艺规范[S].
[15]  IPC60062-6135  1245-1999, IPC-SM-782A[S].
[16]  SJ/T 11216-1999,红外再流焊技术要求[S].
[17]  Pradeep Hegde, Andrew R.Ochana,David.C.Whally et al. Finite element analysis of lead-free surface mount denice.Computional Materials Science,2008,43:212-220.
[18]  Sarvar.F Effective modeling of the reflow soldering process:basis,construction and operation of process model[J].IEEE Trans on ComponenL Packaging,and Manufacturing Technology-partc:1998,21(2):126 133
[19]  Masazumi Amagai,Masako Watanabe,Masaki Omiya,Kikuo KJshimoto,Toshikazu Shibuya. Mechanical characterization of Sn-Ag-based lead-free solders[J].Microelectronics Reliability,42(2002):951 966.

推荐资料